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THE DETERMINANTS OF SCIENCE-BASED CLUSTER 

GROWTH: THE CASE OF NANOTECHNOLOGY 

 

Abstract 

There is growing academic and policy interests in the factors that underpin the formation and 

the growth of clusters, especially for such „hyped up‟ scientific and technological fields as the 

nanotechnologies. This paper analyses the determinants of scientific cluster growth 

(measured by the number of publications that emanate there from), distinguishing between 

structural effects (i.e. initial cluster size, scientific field composition and geographic location) 

on the one hand and its scientific variety, organizational diversity and degree of openness (in 

terms of collaboration with outside actors) on the other. Overall, scientific variety enhances 

clusters growth, but organizational diversity slows it down. However, patterns of growth are 

different in Asia, Europe and North America. It seems that cluster evolution is highly 

contingent on national systems of innovation and on the history of collaboration amongst 

local actors. Policy makers and cluster strategists must design specific policies by zone, and 

should not simply attempt to replicate best practices from one zone to another. Slow growth 

may reflect also „elitist‟ strategies - those based on quality rather than on numbers. 

 

Keywords: cluster growth, nanotechnology, scientific district, publication 
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1. INTRODUCTION 

There is a move towards geographic concentrations of universities and firms involved in 

research. Both recent university mergers (as at Manchester and Helsinki) and the increasing 

numbers of large and diversified campuses testify to the importance of large groups of 

scientists being co-located. Knowledge creation and innovations are often cumulative, and 

tacit knowledge circulates within scientific clusters through direct and repeated interactions 

between cluster members. Clusters encourage the flow of knowledge between actors, 

especially between science based firms and universities and other non-for profit actors 

(Bathelt et al., 2004; Hakanson, 2005; Storper et al., 2004). Empirical studies find that 

knowledge moves more slowly across national, regional, organizational boundaries, and that 

knowledge spillovers tend to be localized (Smith et al., 2005; Tallman et al., 2007). 

However, Gordon et al.‟s (Gordon et al., 2005) critical examination of the role of local 

'milieu' has suggested that specifically local informal information spillovers are very much 

less important for successful innovation than has been suggested.  

Different contributors (Cooke, 2001; Rothaermel et al., 2008; Saxenian, 1994; Zucker et al., 

1998) have examined the effects of clusters on economic development. This paper focuses on 

what determines the evolution of scientific clusters, an under-explored consideration that is 

important to a variety of constituencies, including regional development agencies, corporate 

managers, university administrators and public bodies. Following Lee et al. (Lee et al., 2009), 

it analyses the endogenous and exogenous factors of the growth of scientific clusters,  

Science is cumulative, and publication has long been recognized as the main indicator of 

scientific production. Our study focuses on clusters in nanotechnologies (nanodistrict), 

seeking to explain the factors that determine their growth, measured as the growth of 

publication numbers within a cluster. The number of publications produced within a cluster is 
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usually taken as a good indication of the size of the local scientific community (Autant-

Bernard et al., 2006). Which are the characteristics of the clusters which witness high growth 

during the last decade? Are they focused on one discipline or do they involve highly diverse 

actors?  

Three elements have been identified as being potentially influential in such scientific growth: 

the variety of the knowledge base (which we approximate by measuring the total number of 

scientific disciplines within the cluster); the diversity of actors (approximated by the diversity 

of organizations – Universities, firms, national labs, etc.) and the level of collaboration 

(measured by the degree of openness to scientific collaboration). We divide the analysis in 

two parts: first we look at structural variables (such as the initial size of the cluster, its 

geographic area, and its distribution across scientific fields) and, second, we explore leverage 

variables, which can be influenced by actors‟ strategies or by policy makers. Leverage 

variables focus on one of the fields to create a specific competence or to create a new 

organization to operate in a new scientific field or which leads to new collaborations. Finally, 

we interviewed university leaders within clusters to help us to better understand and interpret 

our results. 

The context of the study is the emerging nanotechnology industries, which is a particularly 

appropriate setting to study cluster evolution as nanosciences and nanotechnologies are often 

described as being highly geographically clustered (www.nanoeconomics.org). Compared to 

biotech clusters, where firms have often been set up around large scientific universities 

(Zucker et al., 1998), nanotechnology clusters are more diversely patterned, and may be 

located near to large firms already involved in one of nanotechnology‟ parent disciplines, or 

to large universities where research in nano-related technologies is undertaken, or to where 

the type of large technology platforms needed to perform nanotechnology research are 

available (Robinson et al., 2007).  
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The next section reviews the different elements which influence the evolution of clusters; 

section three presents the nanotech industries and their regional cluster dynamics and section 

four presents our data and methods. Section five reports our results, which are then discussed 

in section six. The concluding section discusses the public policy and strategic implications 

of nano-cluster evolution and of its determinants.  

2. CLUSTERING AND CLUSTER EVOLUTION 

We draw on industrial cluster analysis framework to study the factors that influence the 

evolution of scientific clusters. Following the tradition initiated by Pouder and St Johns 

(Pouder et al., 1996), Atherton (Atherton, 2003), Lee et al. (Lee et al., 2009) and Menzel and 

Fornahl (Menzel et al., 2010), we explore three key factors which explain the formation and 

growth of the clusters: scientific variety, organizational diversity and openness for 

collaboration. 

Scientific variety 

Geographic physical proximity of organizations in the same industry generates benefits for 

co-located actors as information and knowledge spillovers flow between them. Knowledge 

flows across organization boundaries, and such streams are strengthened by spatial and 

cognitive proximity (Boschma, 2005; Jaffe, 1986; Nesta, 2008). Analyzing the effects of 

geographic agglomeration in scientific clusters, Whittington et al. (Bunker-Whittington et al., 

2009) emphasize four mutually-reinforcing mechanisms that stimulate scientific and 

technological creation within clusters: first, the presence of a strong local scientific workforce 

makes it easier for firms to recruit researchers and skilled engineers; second, knowledge 

flows within and between firms, laboratories and other organizations are stimulated by short 

term inter-organization mobility of personnel; third, a concentration of scientists fosters 
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social exchanges within „virtual‟ colleges or communities of practices; and finally, the 

presence of universities and public sector research organizations nearby also provide the 

cluster with positive spillovers,  as geographic proximity  allows circulation of tacit 

knowledge and fosters the replication of knowledge, giving a unique advantage for 

innovation. Scholars note that proximity with companies in the same industry is important in 

enhancing cluster effects, via the combination of geographic and cognitive proximities 

(Boschma, 2005). These effects can be extended to enhance scientific production and 

innovation in nearby universities and research organizations (and other relevant actors) which 

support developments in complementary and related scientific and technological 

competencies, so that it makes sense to speak about „a biotech cluster‟ or „a nanotech cluster‟ 

as scientific specializations emerge.  

However, the positive impact of such „collocated similitude‟ may be counterbalanced by two 

elements. By analogy with what happens in firms, we can follow Nesta (Nesta, 2008) who 

has shown that it is the specialization (depth) of large firms‟ knowledge bases that stimulates 

innovation in the short run, but its variety (breath) that enhances its innovativeness over the 

longer term. Zhang et al. (Zhang et al., 2007) reach similar results when studying R&D 

collaborative agreements, identifying the breadth of a firm‟s knowledge base as a determinant 

of its alliance dynamics. We define scientific variety as the number of scientific subfields 

represented in a cluster, and consider the breadth of scientific and technological knowledge in 

the cluster as the portfolio of competences available in the area i.e. the total number of 

scientific fields in which cluster members are involved to. As the number of regional level 

scientific and technological varieties increase, the size of the cluster can be expected to 

increase. Scientific and technological diversity allows cluster members to avoid being 

„locked-in‟ to one discipline or technology too early, and provides actors with a continuous 

flow of „newness‟. As technologies and scientific disciplines follow life cycles, the presence 
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of a wide range of disciplines within the cluster may also help to generate continuous 

renewal. Thus, the literature on industrial spillovers highlights two opposite mechanisms: on 

the one hand, specialization enhances the innovation capabilities of actors; on the other 

diversity is required to stimulate cluster growth. As our intuition is that the positive effect of 

diversity will be dominant, we formulate hypothesis H1:  

H1: The broader and more varied the scientific 

knowledge base, the greater the growth of the cluster. 

Organizational diversity 

Scientific variety is not the only source of the continuous renewal of streams of scientific and 

technological discovery within clusters. The strategic actions of different actors who are 

simultaneously exploring divergent hypotheses or scientific paths also create a regular flow 

of new knowledge, even if there is some duplication: thus organizational diversity is likely to 

be a driver of scientific diversity. We define organizational diversity as the number of 

different entities involved in the clusters, including both the total number of its members and 

their diversity (universities, small firms, large firms, etc.). From the point of view of the 

individual entities involved, we hypothesize that diversity allows them to explore different 

bodies of knowledge, and to conduct and support different kinds of organizational 

agreements. 

Clusters are defined by geographic proximity amongst actors. The fluidity of entry and exit - 

as well as competition amongst actors - lead to a constant renewal of actors within the cluster, 

reducing the risk of stagnation (McFadyen et al., 2004; Pouder et al., 1996). Ann Markusen 

(Markusen, 1985) underlines how a diversity of actors brings a large range of potential 

partners, while Lee et al. (Lee et al., 2009) analyze the constrating effects on endogenous 

versus endogenous growth. Clusters attract local firms to move nearby, and science parks 
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have been created to co-locate similar actors. This diversity also leads multinational firms to 

set up subsidiaries or research divisions within the cluster, and has been identified as one of 

the reasons for the success of the Silicon Valley, while the (comparatively) inward looking 

orientation of Pittsburgh and Detroit rendered them more vulnerable. Co-location of various 

categories of actors involved in scientific production - firms, universities, public sector 

research organizations etc. - may contribute to the growth of the cluster by providing it with 

complementary capabilities and competencies. Co-location of firms and universities expands 

the ways in which scientific questions can be formulated and addressed within the same 

environment, and may stimulate different teams to co-engage in research in a particular field 

or topic, as well as fuelling technology transfer and knowledge circulation between actors. 

We can thus suggest that clusters are likely to perform better when they comprise 

heterogeneous members who provide complementary resources, competencies and 

information flows:  

H2: When organizational diversity is higher, the cluster 

growth rate is higher.  

Cluster Size  

Scientific variety, organizational diversity and cluster size go hand in hand, since the range of 

actors and the number of scientific paths within the cluster will both depend on its size. Large 

clusters are “technically” more diverse than small ones, and will have a lower “technical” 

growth rate (as the denominator of the growth rate is larger). Small clusters have the capacity 

to expand a lot. In larger clusters more different disciplines are explored - increasing 

scientific variety - and more actors are deploying different activities and strategies, increasing 

organizational diversity. The increase of ordinary factors - such as travel times and costs - as 

clusters grow (especially those in cities/conurbations) represent a limit to the growth of 
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scientific clusters, so the effect of scientific variety and organizational diversity must be 

moderated by the initial size of the cluster. 

H3: The effects of scientific variety (hypothesis 3a) and 

organizational diversity (hypothesis 3b) on the growth of 

a scientific cluster are moderated by its initial size 

Scientific variety may result from internal diversity of a cluster‟s actors or from the richness 

of their portfolios of collaborations. Actors who collaborate with others beyond the cluster 

gain can advantages from the knowledge network capabilities of other groups or clusters. 

Sourcing knowledge and competencies from beyond the cluster, they can hybridize them with 

cluster capabilities, renewing internal competencies and opening up new research areas. 

However, the level of such outside collaboration is expected to decrease with the size of the 

cluster, as actors within large clusters are able to source  diverse knowledge and resources. 

Just as variety is beneficial to cluster growth, we can hypothesize that collaboration outside 

the cluster will also enhance cluster growth (Bathelt et al., 2004), but that this growth will be 

moderated by cluster size, since large clusters‟ propensity for collaboration is less than that of 

small clusters, which need to source knowledge from outside given the more limited number 

scientific fields within their „home‟ cluster. 

H4: The higher the level of collaboration (moderated by 

the cluster size) the higher the cluster growth rate  

3. DATA AND METHODS 

To explore the determinants of the evolution of scientific clusters, we focus on a new 

emerging field: nanotechnologies. Nanotechnology emerged only 20 years, when IBM 

invented its tunneling and atomic force microscopy instruments. Defined as the manipulation 
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of molecular sized materials to create new products and processes that derive novel features 

from their nanoscale properties, nanoscience and nanotechnology (hereafter 

„nanotechnology‟ or nanotech) appear to have the potential to revolutionalize many industry 

sectors.As a converging technology that inherits from parent technologies i.e. biology, 

microelectronics, artificial intelligence, physics and chemistry, nanotechnology is a 

particularly suitable field in which to analyze the determinants of clustering. Nanotech 

research is highly concentrated, with only 200 clusters worldwide accounting for more than 

70% of total publication numbers. Scientific activities are organized around technological 

platforms which play a key role in such geographic concentration (Robinson et al., 2007). 

Our study focuses on clusters in nanotechnologies (nanotech clusters) and is based on the 

analysis of the determinants of the growth of scientific publications. Publication is the main 

indicator of scientific production as science is cumulative. The number of publications 

measures the scientific production of a specific area and it is used as a proxy of the size of the 

cluster. Scientific publication has been booming in nanotechnologies has been booming as 

publications multiplied three-fold between 1998 and 2006, redistributing scientific 

capabilities worldwide.   

To identify researches in nanotechnologies, we use a validated search strategy based on 

keywords (Mogoutov et al., 2007) to extract publications from ISI/web of Science. The 

general research equation defines the different nanotechnology subfields, which include 

physics, physical chemistry, applied physics, biochemistry, chemistry, analytical chemistry, 

material science and macromolecules. From a methodological standpoint, publications yield 

more consistent geographic information about institutions and their addresses than patent 

documentation does about inventors and assignees. The collected data is then transformed 

into a relational database, and a set of matching tools and a unique classification scheme used 

to help manage the identity of actors and their geo-localization.. The database includes actors 
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-  authors, institutes, laboratories; content – keywords, classes and concepts extracted using 

text mining techniques; locations – countries, cities and spatial clusters; and scientometric 

indicators based on analysis of citations and inter-citation networks, as well as providing 

information about the scientific fields, keywords and journal titles. We focus on institutions 

as our level of analysis i.e. publications are assigned to clusters on the basis of the authors‟ 

institution‟s addresses (same institution name, same address). From an empirical standpoint, 

we identify the different institutions (firms, research laboratories or university departments, 

etc.). within clusters by their names and addresses – where they differ, we consider them as 

different institutions.  

As in all scientometric analysis, we define publication as the number of articles published in 

the field of nanotechnology, and publication participation as the participation of an 

institution in a publication (of course, co-authoring means that participation numbers are 

higher than publication numbers). The following example illustrates the counting method for 

the different variables. The publication RSTUV, co-authored by author R from institution α 

in Europe, author S from institution β in Europe, author T from institution β in Europe, author 

U from institution γ in Asia and author V from institution δ in the US, would yield a count of: 

1 publication, 5 authors (R, S, T, U and V), 4 institutional participations (α, β, γ and δ) and 3 

geographic area participations (Europe, Asia and the US). For our purposes, the count we are 

interested in is that of the institutional participations (in this case, 4). 

We define nanotech clusters as geographic agglomerations that registered a cumulative 

number of more than 1,000 nanotechnology publications between 1998 and 2006. (The 

number of publications in 1998 may be very low, but they are included if their cumulative 

number has reached 1,000 by 2006.) All publications from the surrounding 50 km (or 30 km 

for Japan, Korea, and Taiwan) are considered as belonging to the cluster. When publications 

are located between two clusters (i.e, there is an overlap), they are grouped if they are close 
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(i.e. more than 20% of their addresses overlap)or attributed to the nearest cluster when the 

overlap is under 20%.] To interpret the results and to better understand the different dynamics 

of the clusters in each region, we conducted eleven semi-direct explorative interviews within 

universities in clusters in the US, Asia and Europe (MIT, Caltech, Univ of Chicago, Shanghai 

Jiao-Tong University Hsinchu, National Chiao-Tong Univ., University of Tsukuba, 

University of Manchester, Karlsruhe Institute of Technology, TU Dresden, EPFL and Unil – 

Lausanne, Swizterland, University of Aalto et VTT.) 

4. RESEARCH CONTEXT IN NANOTECHNOLOGIES 

Nanotechnologies grow from existing knowledge bases, evolving from their parent fields of 

chemistry, physics, microelectronics and life sciences. Empirical evidence has shown that 

research in nanotechnologies has been geographically concentrated from the start, and has 

developed in a small number of clusters spread across the world. Table 1 presents the number 

of clusters of different sizes in each region (first line), the total number of participations in 

publications associated with the cluster involved („publication participations‟) (line 2) and 

percentages of the total (line 3) for each geographic area between 1998-2006. 
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Table 1: Number and size of clusters by area, numbers and percentages of 

publication participants (1998-2006).  

AREA   SIZE (cumulative no. of pub participations) 
Out of 

Cluster** 
Total Average  Large 

(>10k€) 

Medium 

(5-10k€) 

Small 

(2-5k€) 

Emergent 

(1-2k€) 

EU*  # of clusters 1 9 40 31 *** 81  

 # of publication participations 16,385 66,607 131,339 45,906 102,979 363,216 3,213 

 % of publication participations 4.51% 18.34% 36.16% 12.64% 28.35% 100%  

US/ 

Canada 

 3 4 24 21   52  

 41,118 27,811 75,367 28,532 77,142 249,970 3,324 

 16.45% 11.13% 30.15% 11.41% 30.86% 100%  

Asia  7 9 21 12  49  

 141,089 65,701 61,384 18,140 66,335 352,649 5,843 

 40.01% 18.63% 17.41% 5.14% 18.81% 100%  

Other  1 1 7 9   18  

 10,368 5,287 18,805 12,698 42,137 89,295 2,620 

 11.61% 5.92% 21.06% 14.22% 47.19% 100%  

Total  12 23 92 73  200  

 208,960 165,406 286,895 105,276 288,593 1,055,130 3,833 

 19.80% 15.68% 27.19% 9.98% 27.35% 100%  

* EU area is EU25 counties, plus Candidate & Associated Countries  

** This column represents publication participations not from cluster  

*** There is no number of clusters as publications are out of clusters.  

 

Asia has the smallest cluster count but the highest number of large clusters (thus the largest 

mean cluster size) showing that scientific production is much more clustered in this region 

than elsewhere (and especially in South Korea and Japan). Europe hosts more than 35% of 

the emergent and small clusters, and scientific production (as represented by publications) 

appears more distributed there and in the US, which host (respectively) 71 and 45 of the 165 

small and emergent clusters, and where about 30% of production is „out of cluster‟. In terms 

of publication participants, Asia‟s large and medium clusters taken together account for more 

than 58% of publication participation numbers, compared to only 23% in Europe and 27% in 

the US/Canada. Asia and Europe each produce about 34% of the total number of publication 

participations, while US/Canada contributes only about 24%.  
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Map 1: Publications in nanotechnologies worldwide 

 

Map 1 reveals the geographical patterns of the world‟s 200 nanotechnology clusters, based on 

their number of publications, with red points representing the largest clusters. Scientific 

publications remain highly concentrated in Europe (where there are a large number of 

medium and small clusters close to each other); bipolar in the US (mostly on the East and 

West coasts); and in Asia concentrated in Japan and South Korea, more dispersed in China, 

and with two large „outlier‟ clusters in Moscow and Singapore. (For the specific case of the 

US, our distribution of clusters is similar to that reported by Shapira et al (Shapira et al., 

2008).) To study the determinants of scientific cluster growth, we perform OLS regressions 

on the annual growth rate of the number of publication participations from 1996 to 2008. 

Analyses were first performed worldwide and then by geographic areas: the dependent and 

independent variables are presented in the following sections. 
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Dependent variable 

This paper focuses on cluster growth, a different notion from cluster performance, which not 

so straightforward, and which has been operationalized in many ways. Audretsch (Audretsch, 

1995) considered numbers of innovations, while Audretsch and Feldman (Audretsch et al., 

1996) focused on rates of technology transfer and Piore and Sabel (Piore et al., 1984) on 

employment growth. We prefer to analyze cluster growth without any explicit reference to 

performance, which allows us to avoid difficult theoretical debates about linkages between 

the two. Empirically, the evolution of scientific cluster productivity is mirrored in its 

publications, and approached by the mean annual growths of the numbers of publication 

participations associated with each cluster between 1998 and 2006.  

The models estimate the influence of variety of scientific field and of actors on clusters‟ 

growth, and the effects of their scientific openness. Our strategy to analyze the determinants 

of the cluster growth has been to split out two categories of variables: structural variables 

which describe the cluster and leverage variables which cluster actors can „play‟ 

strategically. Figure 1 displays the average growth by cluster size, revealing generally similar 

means whatever the size – although faster growth for small and emergent clusters – and 

higher diversity in large clusters and in outliers. Looked at in geographic terms, Figure 2 

shows that Asian clusters display higher growth. Figure 3 sum ups these two dimensions size 

and areas, and confirms that Asian clusters grow faster whatever their size. 
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Figure 1 Average cluster growth distribution by Cluster size 

 

Figure 2 Average cluster growth distribution by Cluster Area 
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Figure 3 Heat map: Average cluster growth distribution by Cluster Area & 

size 

  

All together the three Figures reveal three main features. The average annual growth of 

nanotechnology publications is very high, around 15% (as compared to the 3% annual growth 

of the ISI database as whole); numbers of publications associated with large clusters are 

growing quickly, and emergent and small clusters have more outliers as seen in Fig 1. Asian 

clusters are growing significantly more rapidly than those in other regions.  

Structural variables 

Three different types of structural variables are defined:  

 The first type contains the initial size of the cluster, measured by the logarithm of the 

number of publications in 1998 (L1998); 

 The second type is world geographic areas i.e. Asia; EU (i.e. EU25 & candidates & 

associated countries), USA/Canada and Rest of the world;  

 The third type is scientific specializations. It indicates the main specialization of the 

cluster as well as the portfolio of specialization. It describes the specialization into six 

categories 001 to 006 - respectively Physics (PHYS), Engineering, Computing & 
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Technology (ENG), Electricity and Electronics (ELEC), Life Sciences and Biology 

(LIFE), Agriculture (AGRI) and Medical Sciences (MED) – which represent the 

highest aggregation levels in the Thomson ISI database (see appendix 1 for detailed 

information). (ENG is used as the reference category in our various models.) 

Leverage variables 

We construct three indexes for the scientific variety (SCVAR) and organizational (ORGDIV) 

diversity of clusters, and for collaboration with actors outside the cluster (OUTCOLLAB). So: 

 SCVARj is the Herfindhal index for the detailed JCR/ISI publication categories (of 

which there are 223). Thus: 

SCVARj = ∑i (Cij/C.j)
2 

where i is the scientific category, j is the cluster and C 

represents the number of publications in each category. It is a leverage variable 

as the recruitment of a small group of highly specialized researchers may 

create a new scientific subfield within the cluster;  

 ORGDIVj is the Herfindhal index for actors who have published in nanotechnology as 

identified from their addresses. Thus ORGDIVj = ∑a (Caj/C.j)
2
 where a is the specific 

actor (university department, firm, research organization or not-for-profit 

organization), j the cluster and C the total number of publication; 

 OUTCOLLAB is the index of collaboration i.e. the number of publications with at 

least one address from outside the cluster, divided by the number of co-authored 

publications (i.e. with at least two addresses). OUTCOLLAB has two faces: it reveals 

the degree to which cluster actors are able to mobilize contributors from other clusters 

or beyond clusters, and also represents the „leakage‟ or dissemination of knowledge 

from the cluster to the outside world; 

 L1998 is the logarithm of the number of publications in 1998;  
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 L2006 is the logarithm of the number of publications in 2006; and  

 EVOL is the mean of Cluster‟s Annual Growth . 

Table 3 presents the description of the population (cluster sizes are expressed in logs) and 

Table 4 shows their bivariate correlations. 

Table 3: Description of the population 

Variable Label Min Mean Max Std Dev 25th Pctl 50th Pctl 75th Pctl 

pub1998 Pub(1998) 34.00 254.59 2928.00 308.06 95.00 167.00 301.00 

pub2006 Pub(2006) 128.00 671.24 5656.00 746.39 279.50 433.00 713.00 

sum_98_06 Total Pub (1998-2006) 1018.00 3832.69 35363.00 4297.51 1586.50 2456.50 4130.00 

VarPub1999

_1998 

Pub Annual Growth -

1999/1998- 
-0.25 0.16 0.82 0.22 0.01 0.13 0.27 

VarPub2000

_1999 

Pub Annual Growth -

2000/1999- 
-0.27 0.09 0.90 0.17 -0.02 0.08 0.17 

VarPub2001

_2000 

Pub Annual Growth -

2001/2000- 
-0.28 0.16 2.85 0.27 0.02 0.13 0.24 

VarPub2002

_2001 

Pub Annual Growth -

2002/2001- 
-0.24 0.18 0.77 0.17 0.05 0.18 0.30 

VarPub2003

_2002 

Pub Annual Growth -

2003/2002- 
-0.34 0.12 0.88 0.20 -0.02 0.10 0.22 

VarPub2004

_2003 

Pub Annual Growth -

2004/2003- 
-0.25 0.18 0.83 0.18 0.07 0.16 0.27 

VarPub2005

_2004 

Pub Annual Growth -

2005/2004- 
-0.22 0.19 0.76 0.17 0.07 0.19 0.29 

VarPub2006

_2005 

Pub Annual Growth -

2006/2005- 
-0.26 0.13 0.89 0.16 0.03 0.10 0.21 

EVOL Evolution(Mean of 

Annual Growths) 
0.03 0.15 0.50 0.08 0.10 0.13 0.18 

Percfirm firms share in Cluster 0.00 3.64 27.02 4.80 0.56 1.85 4.59 

txouv1x Cluster Openness Rate 1.00 5.23 19.34 2.78 3.25 4.52 6.64 

_001PHYS Spec. index in Physics 0.67 1.00 1.42 0.12 0.92 1.00 1.08 

_002ENG Spec. index in 

Engineering/Computing 

Technology 

0.44 1.04 2.15 0.29 0.85 1.01 1.20 

_003ELEC Spec. index in 

Electricity/Electronics 
0.30 0.91 1.83 0.27 0.73 0.89 1.07 

_004LIFE Spec. index in 

LifeSciences/Biology 
0.08 1.03 3.54 0.64 0.49 0.94 1.43 

_005AGRI Spec. index in 

Agriculture 
0.08 1.15 4.53 0.75 0.65 1.00 1.47 

_006MED Spec. index in Medical 

Sciences 
0.00 0.99 6.22 1.01 0.25 0.61 1.63 

hhi9 Herfindahl Index(ISI 9) 0.25 0.35 0.55 0.05 0.31 0.34 0.38 

Hhidet Herfindahl Index(ISI) 0.03 0.07 0.17 0.02 0.05 0.06 0.08 

Hhiact Herfindahl 

Index(Actors) 
0.05 0.39 0.99 0.26 0.18 0.31 0.56 
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Table 4: Bivariate correlations 

Spearman Correlation Coefficients, N = 200  Prob > |r| under H0: Rho=0 
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EVOL 1.00000 0.54720 -0.51452 -0.43973 -0.41251 0.09940 0.43662 -0.32087 -0.27733 -0.14092 -0.27480 0.24854 0.20326 0.02189 

Evolution(Mean of Annual Growths)   <.0001 <.0001 <.0001 <.0001 0.1614 <.0001 <.0001 <.0001 0.0466 <.0001 0.0004 0.0039 0.7583 

DumASIA 0.54720 1.00000 -0.11931 -0.27753 -0.32510 0.30758 0.46787 0.03292 -0.55063 -0.44552 -0.47441 0.45961 0.46243 -0.02205 

ASIA Dummy <.0001   0.0924 <.0001 <.0001 <.0001 <.0001 0.6435 <.0001 <.0001 <.0001 <.0001 <.0001 0.7566 

lgpub1998 -0.51452 -0.11931 1.00000 0.50197 0.05116 -0.08812 -0.30688 0.41099 0.14396 -0.05441 0.18062 -0.18511 -0.11889 -0.33624 

log Pub(1998) <.0001 0.0924   <.0001 0.4719 0.2147 <.0001 <.0001 0.0420 0.4441 0.0105 0.0087 0.0936 <.0001 

Percfirm -0.43973 -0.27753 0.50197 1.00000 0.19903 -0.38523 -0.36641 0.22293 0.48513 0.18480 0.50015 -0.49891 -0.37825 -0.13842 

firms share in Cluster <.0001 <.0001 <.0001   0.0047 <.0001 <.0001 0.0015 <.0001 0.0088 <.0001 <.0001 <.0001 0.0506 

txouv1x -0.41251 -0.32510 0.05116 0.19903 1.00000 0.03417 -0.08128 0.08392 0.06732 0.07303 0.10043 -0.03717 -0.07687 -0.14040 

Cluster Openness Rate <.0001 <.0001 0.4719 0.0047   0.6310 0.2526 0.2374 0.3435 0.3041 0.1571 0.6013 0.2793 0.0474 

_001PHYS 0.09940 0.30758 -0.08812 -0.38523 0.03417 1.00000 0.18124 0.04444 -0.71285 -0.55883 -0.69980 0.92907 0.66460 -0.14227 

Spec. index in Physics 0.1614 <.0001 0.2147 <.0001 0.6310   0.0102 0.5321 <.0001 <.0001 <.0001 <.0001 <.0001 0.0445 

_002ENG 0.43662 0.46787 -0.30688 -0.36641 -0.08128 0.18124 1.00000 -0.31707 -0.59993 -0.38119 -0.44805 0.41130 0.42318 -0.14559 

Spec. index in Eng./Comp.Tech. <.0001 <.0001 <.0001 <.0001 0.2526 0.0102   <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0397 

_003ELEC -0.32087 0.03292 0.41099 0.22293 0.08392 0.04444 -0.31707 1.00000 -0.18977 -0.20338 -0.12307 -0.01612 0.26955 -0.00162 

Spec. index in ElectricityElectronics <.0001 0.6435 <.0001 0.0015 0.2374 0.5321 <.0001   0.0071 0.0039 0.0825 0.8207 0.0001 0.9819 

_004LIFE -0.27733 -0.55063 0.14396 0.48513 0.06732 -0.71285 -0.59993 -0.18977 1.00000 0.69077 0.80335 -0.87058 -0.85795 0.14750 

Spec. index in LifeSciencesBiology <.0001 <.0001 0.0420 <.0001 0.3435 <.0001 <.0001 0.0071   <.0001 <.0001 <.0001 <.0001 0.0371 

_005AGRI -0.14092 -0.44552 -0.05441 0.18480 0.07303 -0.55883 -0.38119 -0.20338 0.69077 1.00000 0.51834 -0.67439 -0.66192 0.15649 

Spec. index in Agriculture 0.0466 <.0001 0.4441 0.0088 0.3041 <.0001 <.0001 0.0039 <.0001   <.0001 <.0001 <.0001 0.0269 

_006MED -0.27480 -0.47441 0.18062 0.50015 0.10043 -0.69980 -0.44805 -0.12307 0.80335 0.51834 1.00000 -0.82280 -0.78319 -0.08246 

Spec. index in Medical Sciences <.0001 <.0001 0.0105 <.0001 0.1571 <.0001 <.0001 0.0825 <.0001 <.0001   <.0001 <.0001 0.2457 

hhi9 0.24854 0.45961 -0.18511 -0.49891 -0.03717 0.92907 0.41130 -0.01612 -0.87058 -0.67439 -0.82280 1.00000 0.79341 -0.13231 

Herfindahl Index(ISI 9) 0.0004 <.0001 0.0087 <.0001 0.6013 <.0001 <.0001 0.8207 <.0001 <.0001 <.0001   <.0001 0.0618 

Hhidet 0.20326 0.46243 -0.11889 -0.37825 -0.07687 0.66460 0.42318 0.26955 -0.85795 -0.66192 -0.78319 0.79341 1.00000 -0.04036 

Herfindahl Index(ISI) 0.0039 <.0001 0.0936 <.0001 0.2793 <.0001 <.0001 0.0001 <.0001 <.0001 <.0001 <.0001   0.5704 

Hhiact 0.02189 -0.02205 -0.33624 -0.13842 -0.14040 -0.14227 -0.14559 -0.00162 0.14750 0.15649 -0.08246 -0.13231 -0.04036 1.00000 

Herfindahl Index(Actors) 0.7583 0.7566 <.0001 0.0506 0.0474 0.0445 0.0397 0.9819 0.0371 0.0269 0.2457 0.0618 0.5704   
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Table 4 shows the relations between the different variables. The openness rate has a negative 

direct effect. Cluster growth varies positively with scientific variety (SCVAR) but negatively 

with initial cluster size; and positively with specialization in engineering (ENG), but 

negatively with other specializations, especially life sciences (LIFE, AGRI and MED). While 

the diversity of actors (HHIACT) is linked with the initial size of the cluster, it is not directly 

correlated with cluster growth (EVOL), nor with scientific variety. The level of collaboration 

outside the cluster (TXOUV1X) is negatively correlated with the cluster growth, but with none 

of the other variables. 

5. RESULTS  

Our estimation strategy was based on using OLS regressions to estimate the annual growth of 

the number of publication. We first run the regression on all the variables and then adopt a 

strategy to maximize the adjusted R-square. Four models have been ran, one with all the 

variables, two which maximize the Adjusted R-square and the last one with interaction terms 

based on correlated variables (Table 4). Table 5 presents the best model (based on the Adj R-

square criteria) to test the four hypotheses First of all, Asian clusters are growing 

significantly faster whatever the model. Second, size plays a moderating role as well as the 

diversity of technologies.  
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Table 5: OLS regressions explaining the mean of cluster‟s annual growths 

Parameter Estimate Model 1 Model 2 Model 3 Model 4 

Variable Label 
Parameter 

Pr > |t| 
Parameter 

Pr > |t| 
Parameter 

Pr > |t| 
Parameter Pr > |t| 

Estimate Estimate Estimate Estimate  

Intercept Intercept 2.39547 0.2246 0.42202 <.0001 0.48962 <.0001 2.868874966 0.1163 

DumASIA ASIA Dummy 0.10684 <.0001 0.09532 <.0001 0.11572 <.0001 0.099984455 <.0001 

DumEU EU25 & Candidate & Associated Countries Dummy 0.00615 0.6604 - - - - - - 

DumUSCanada US & Canada Dummy 0.02365 0.1882 - - -  - - 

lgpub1998 log Pub(1998)meg -0.04712 <.0001 -0.04611 <.0001 -0.04613 <.0001 -0.004781555 0.8041 

percfirm firms share in Cluster -0.00084178 0.3201     -0.00107 0.1918 -0.012292303 0.0630 

txouv1x Cluster Openness Rate -0.00392 0.0065 -0.00520 <.0001 - - -0.008672100 0.4426 

_001PHYS Spec. index in Physics -1.09780 0.2733 - - -0.06701 0.0404 -1.443591153 0.1161 

_002ENG Spec. index in EngineeringComputingTechnology -0.37084 0.3503 0.02152 0.1553 - - -0.499273150 0.1715 

_003ELEC Spec. index in ElectricityElectronics -0.32471 0.2765 -0.03841 0.0108 -0.04368 0.0043 -0.409172537 0.1383 

_004LIFE Spec. index in LifeSciencesBiology -0.20077 0.3268 - - - - -0.259259655 0.1717 

_005AGRI Spec. index in Agriculture -0.03497 0.3403 - - - - -0.048006595 0.1548 

_006MED Spec. index in Medical Sciences -0.03746 0.3116 - - - - -0.050547755 0.1326 

hhi9 Herfindahl Index(ISI 9) 0.23892 0.4796 - - - - 0.295296734 0.3756 

hhidet Herfindahl Index(ISI) -0.10659 0.7531 - - - - 2.188924710 0.0744 

hhiact Herfindahl Index(Actors) -0.06396 0.0004 -0.04222 0.0050 -0.04652 0.0024 -0.015515086 0.8772 

percfirm*hhidet 

Interactions  

0.084621380 0.0595 

txouv1x*hhidet 0.100752310 0.2184 

lgpub1998*hhidet -0.618776031 0.0090 

lgpub1998*hhiact -0.007295850 0.7197 

lgpub1998*txouv1x -0.000412622 0.8162 

lgpub1998*percfirm 0.001033637 0.2745 

Model quality 

R_Square 0.6833 0.6691 0.6479 0.703389 

Adj R_Square 0.6575 0.6588 0.6370  

 

 



23 

Structural effects 

Three different groups of structural variables are defined: size, geographic areas, and 

scientific specialization.  

The initial size of the cluster (L1998), measured by the logarithm of the number of 

publications in 1998 has the expected negative impact on the cluster growth. The larger the 

cluster in 1998, the lower will be the growth rate. This effect disappears when the the size is 

used as a moderator. Geographic areas. Asian clusters are growing at higher rate than other. 

The initial distribution of cluster size is similar worldwide, but, even though cluster sizes are 

rather similar on average in Asia (differences are not significant), size distributions are more 

asymmetric than in Europe and in the US, with more large and medium clusters.  

The percentage of firms within the clusters has a negative impact on its growth. As firms are 

rather involved on innovation and patent, it seems normal that the higher the percentage of 

firms within the clusters, the lower the growth rate of the number of publications. This effect 

disappears when the percentage of firms is moderated by technological diversity, leading to a 

positive effect. When firms are associated with the introduction of technological diversity, the 

presence of firms has a significant and positive effect on cluster growth.  

In terms of scientific specializations, clusters which demonstrate specialization in physics 

and Electricity/Electronics grow significantly less rapidly than others. When scientific 

specialization is moderated by the size, the effects disappear. Table 6 reveals the different 

patterns of scientific specialization by areas. Comparing each area to the world 100 index (see 

table 6), Asia appears to specialize in physics (Physical, Chemical and Earth science), 

engineering (Engineering, Computing and Technology) and Electricity/Electronics, which 

together account for about 85% of Asian nanotechnology publications, but is under 

specialized in Life sciences in general, where clusters have grown more slowly. While Asian 
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clusters specialize in fast-growing scientific fields, European clusters are more balanced and 

those in US/Canada are more specialized in life sciences where, again, growth rates are 

generally lower.  

Table 6: index of specialization  

 Clusters in 

Index of Scientific 
Specialization 

Asia EU US/ 
Canada 

Other Index 
World 

Total (% of 
publications) 

Physical, Chemical &  

Earth Sciences (PHYS) 

105.2 100.7 88.1 111.0 100 50.75% 

Engineering, Computing & 

Technology (ENG) 

115.6 96.3 80.1 103.0 100 20.10% 

Electronics & Telecom. 
Collection (ELEC) 

108.4 93.0 99.1 91.4 100 15.07% 

Life Sciences (LIFE) 51.9 109.4 171.6 60.0 100 10.31% 

Agriculture, Biology & 
Environ‟l Sciences (AGRI) 

59.0 114.6 1.421 105.6 100 1.78% 

Clinical Medicine (MED) 34.8 113.5 1.933 56.2 100 1.78% 

% of publication per area 33.42% 34.42% 23.69% 8.46%  100% 

 

Leverage variables 

The introduction of variety/diversity variables (the Hinferdhal indexes of organizational 

diversity, scientific variety and index of outside collaborations) and their interaction effects 

increase the explanation power (R²) of the different models (i.e. model 4 vs. 3 or 1). Scientific 

variety impacts positively on cluster growth rates, only when it is moderated by initial cluster 

size. Thus hypothesis 1 (‘The broader and more varied the scientific knowledge base, the 

higher the growth of the cluster.’) is not validated, but hypothesis 3a is supported. 

Organizational diversity has a negative impact on cluster growth, which suggests that 

organizational frontiers within clusters slow down information circulation. Highly diverse 

clusters do not benefit as much from knowledge externalities as do less diverse clusters, so 

hypothesis H2 is not supported. Organizational diversity and scientific variety do not go hand 

with hand. When controlling for the cluster size, the effect of diversity/variety becomes non 

significant. Scientific variety is more important than organizational diversity in enhancing 
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cluster growth. Hypothesis H3b is not supported. When clusters grow, diversity must grow 

slower than the cluster to lead to endogenous growth. 

Finally, the degree of outside collaboration appears to have a negative impact on growth, so 

hypothesis H4 ‘The higher the level of collaboration (moderated by its size) the higher the 

cluster growth rate’ is not supported.  

This may be a result of geographical patterns of collaboration, as the faster-growing Asian 

clusters show a lower proportion of out-cluster co-authors, evidence that their actors are less 

include to enter into collaboration than those of clusters in other areas. Asian clusters are also 

larger in average than American and European ones, and their scientific specializations are 

different than those of other clusters: more specialized in physics and engineering the faster-

growing specializations) and less specialized in Medicine and Life sciences, which are 

growing more slowly.  

Table 7 proposes the best OLS (R² adjusted procedure) for each geographic area to evaluate 

the extent to which the determinants of the cluster growth are contingent on geography.  
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Table 7 : OLS models Analysis by areas (best model by area) 

  EU25 Candidate US & Canada Asia 

Parameter Estimate Pr > |t| Estimate Pr > |t| Estimate Pr > |t| Estimate Pr > |t| Estimate Pr > |t| Estimate Pr > |t| 

Intercept 0.38610 <.0001 0.441080483 0.0039 -0.14757 0.0079 -.1296990859 0.1201 0.62494 <.0001 0.5575031312 0.1329 

lgpub1998 -0.04173 <.0001 -0.020539809 0.4399         -0.06893 <.0001 -.0403300451 0.5243 

percfirm    -0.005889582 0.7382    -.0024381715 0.7906    -.0081042711 0.7225 

txouv1x -0.00446 0.0049 -0.057632317 0.0035 0.00310 0.0318 0.0119864480 0.3312 -0.01645 0.0020 -.0358077686 0.4411 

_001PHYS                   

_002ENG         0.07870 0.0039 0.0745515997 0.0161 0.06066 0.1081 0.0758038962 0.1883 

_003ELEC -0.03424 0.1097 -0.021949048 0.2755             

_004LIFE         0.10170 <.0001 0.0974223285 <.0001        

_005AGRI                   

_006MED         -0.02189 0.0002 -.0191150267 0.0114        

hhi9                   

hhidet 0.42858 0.1350 2.130931988 0.3248 1.13949 0.0026 -.4879525959 0.8332     -.3187562982 0.9429 

hhiact -0.06227 0.0035 -0.007322705 0.9628    0.1170439079 0.4932 -0.13582 0.0044 0.0961322296 0.7410 

hhidet*percfirm 

 

0.040465956 0.6912 

 

0.0522537613 0.3777 

 

0.1374968986 0.4097 

txouv1x*hhidet 0.387544924 0.0023 -.0322843607 0.7983 0.1523650887 0.7056 

lgpub1998*hhidet -0.874398922 0.0430 0.3207633577 0.5135 -.2009518160 0.7962 

lgpub1998*hhiact -0.014938272 0.6389 -.0244234257 0.4614 -.0453262734 0.4382 

lgpub1998*txouv1x 0.005660247 0.0493 -.0015796325 0.5520 0.0018704254 0.7838 

lgpub1998*percfirm 0.000636560 0.8011 -.0002473162 0.8484 -.0006214467 0.7753 

R-Square 0.4977 0.639252 0.5397 0.581615 0.6129 0.640062 

Adj R-Sq 0.4643 - 0.4896 - 0.5777 - 

Dependent Mean 0.11486 0.12406 0.24074 

Number of Observations  81 52 49 
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For clusters in Asia, models without interactions show those specialized in engineering show 

faster growth than others, but initial size, the degree of out-cluster collaboration and the 

diversity of actors have negative effects on cluster growth. However, when the interactions 

are introduced, none of the variables appear to be significant. 

For North American clusters, the degree of collaboration outside the cluster, the diversity of 

scientific fields within the cluster and the relative specialization in engineering and life 

sciences enhance cluster growth, but when models integrate interactions, only the variables 

representing scientific specialization are significant. 

For Europe, the degree of openness to outside collaboration has a positive impact when it is 

moderated by the scientific diversity, revealing that clusters may find complementary 

technologies in other clusters through collaborations. This may be one of the effects of the 

public policies towards the European Research Area to stimulate collaborations within 

Europe. The initial size of the cluster plays a negative role on growth, unless it is combined 

with more scientific diversity as it is suggested by the positive interaction between size and 

degree of collaboration.  

Altogether, therefore, the determinants of the clusters growth seem to be embedded in local 

and political contexts. There are no unique dynamics which enhance cluster growth, as cluster 

evolutions seem path dependant and influenced by local, national and supranational 

environments. If we consider the diversity of political, regional, economic and social 

environment in Asia (India, Japan, China and Korea), it is not surprising that we cannot 

identify any variables as being significant determinants of cluster growth, while in more 

homogenous environments (US, Canada and Europe), degree of openness of the clusters, 

historic specialization of clusters and scientific diversity clearly appear to influence such 

growth. 
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6. DISCUSSION  

Nanotechnology research activity grew rapidly between 1998 and 2006, as did publication 

numbers, which almost trebled. Our analysis of the determinants of cluster growth reveals that 

geography is important in understanding cluster growth, as the determinants change from one 

continent to another, even in highly globalised scientific and technological fields where large 

groups play key roles (Mangematin et al., 2010). Path dependencies and regional (Freel, 

2002; Klein, 2003), and national systems innovation (Mowery, 1992; Patel et al., 1995; 

Stubbart et al., 1995) shape both local environment and patterns of collaboration. The usual 

relationships between scientific variety, organizational diversity, agglomeration and cluster 

growth have to be viewed through a geographic prism. 

Two contributions of the paper are discussed: (1) the roles of diversity and variety in scientific 

cluster growth and (2) the   specificities of the determinants of cluster growth in Asia, Europe 

and the USA.  

Scientific variety and organizational diversity to foster cluster 

growth 

Our analysis of the determinants of the growth of nanotechnology clusters does not fully 

support existing approaches which underline scientific variety and organizational diversity as 

key resources for cluster development. According to Frenken (Frenken et al., 2007), gains in a 

cluster‟s diversity provide central support for its growth and generate strong path 

dependencies in the spatial specialization of clusters. Organizational diversity fosters 

scientific variety during the emergence phase, fostering the exploration of the different 

hypothesis promoted by scientists in different organizations. When the field reaches a certain 

level of maturity - when more instrumentation is required as well as larger teams - 

organizational fragmentation may slow growth down. Scholars working on knowledge have 
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pointed out that organizations erect barriers against knowledge flows, so that it circulates 

more easily within than between organization (Bell et al., 2007; Lavie et al., 2008; Zeller, 

2002): geographic proximity may not fully counter the negative effects of such organizational 

boundaries.  

The comparative econometric results displayed in Tables 5 and 7 reveal a complex pattern. 

First of all, scientific diversity plays a key role when moderated by initial cluster size. For a 

given initial size, scientific diversity enhances cluster growth, a result that is in line with 

previous observations, especially those of Frenken (2007) on clusters and those on firms 

(Nesta, 2008). Analyzed by geographic area, the impact of scientific diversity is negative in 

Europe and does not play a significant role in Asia. Organizational diversity has a negative 

impact in Asia, suggesting that diversity slows down growth. Such results are surprising, 

scientific variety and organizational diversity usually enhancing growth: Results are in 

accordance with existing literature only for North America, the area most often studied. The 

role of scientific variety and organizational diversity seems contingent on national systems of 

innovation. History and path dependence based on previous patterns of collaborations 

amongst actors highly influence the growth of science based clusters. Different (unobserved) 

factors - such as the megapolisation in Asia or European public policy to build the European 

Area of Research -  may interact to counter-balance the positive impact of diversity reported 

in US studies. Or regional science may be localized, with different determinants and different 

engines of growth in the different parts of the world. 

Outperforming Asia?  

Cluster growth in Asia outperforms that in America and Europe, so patterns of growth are 

apparently contingent on geography. But it also seems that objectives differ according to both 

geography and relative position on the scientific map. The US/Canada zone has been leading 

scientific production as a whole. They have been ahead until 2006 for Nanotechnologies and 
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they are now challenged by Europe first and then by Asia.. 

To better understand these evolutions and actors‟ strategies, we interviewed those in charge of 

strategy in different clusters. They reveal that policies differ in Europe and Asia on the one 

hand and the USA in the other. European and Asian policies have been oriented towards 

growth, encouraging the merging of institutions and expansion in student numbers, and in 

numerical size more generally in terms of firms and start-ups, while in the US/Canada, 

leading universities and clusters institutions within clusters are focusing on quality rather than 

on numbers. When interviewed, University vice presidents and animators of US clusters 

denied that publication numbers were important indicators, and that they concentrated only on 

citation numbers, endowments and fund raising. The strategy they reported was of influencing 

the evolution of the scientific field, forming the research agenda and defining new research 

questions, in what could be seen as an evolution of the urge to “publish or perish” towards “be 

cited or perish”. The strategy of leading institutions in the US/Canadian clusters seems to 

change with the emergence of nanotechnologies. While China, with outstanding growth rates, 

leads in terms of the publication number growth, it seems that US clusters are changing the 

rules of the game, emphasizing citations and the influence of visibility rather than domination 

by numbers, which aligns with emerging top university policies for faculties to achieve 

publication in top journals and to raise funds as part of a highly selective competition to 

recruit students. 

Path dependency and public policies 

Geography strongly influences the cluster evolution, and this paper highlights strong path 

dependency and important contingent effects. History plays a key role in creating patterns of 

specialization and of organization and modes of collaborations between actors, and also of 

degrees of openness to the world beyond the cluster. Saxenian‟s story about the Silicon 

Valley, or reports about Minatec (Delemarle et al., 2008) reveal the munificence of the local 
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environment, the tightness of relationships between local actors and the quality of their 

entrepreneurial spirit as the keys to cluster development.  

Public policies differ in Asia, Europe and North America. The scope for public policy remains 

limited in the short run, since structural elements are the most influential and modifying them 

is a long process. Within clusters, three different policies have been tried: university mergers 

to create large institutions; the emergence of small teams to foster scientific diversity; and 

coordination within “umbrella organizations”. For the first point, policy makers and 

university strategists tend to merge different universities in Asian and European clusters (as at 

Helsinki and Manchester), but reducing organizational barriers to knowledge flows and 

fostering knowledge hybridization within the same large institution can be a long process. The 

second type of policy is to support the formation of specialized teams or institutes to stimulate 

scientific variety by increasing organizational diversity. While this counterbalances policies 

that concentrate on a fast growing scientific field, it may have uncertain effects, as reducing 

scientific variety slows down growth in the long run. The reinforcement of under developed 

disciplines within the cluster combines a major specialization theme with a level of scientific 

diversity. The fragmentation of scientific fields into competing organizations may also 

decrease cluster growth by creating unnecessary boundaries and interfering with knowledge 

circulation, which can be countered by policies aimed at regrouping different institutions and 

erasing boundaries, thus enhancing cluster growth. On the third point, local policy makers 

may support the setting up of “umbrella organization” which orchestrate the networking 

between cluster organizations and coordinate its scientific strategy ex ante. But public policies 

that stimulate collaboration between clusters must be conducted carefully, as they may reduce 

their potential for growth.:  

7. CONCLUSION 
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Despite Cairncross‟s (1997) pronouncement, proximity is not dead. Empirical results provide 

researchers, policy makers and firms with a balanced picture: the growth of a scientific cluster 

is strongly path dependent and will be determined by its structural characteristics. Initial 

cluster size, location (continent) and the main scientific fields in which it specializes (life 

sciences in the US, engineering and electronics in Asia) explain 2/3 of the variations in 

scientific cluster growth. Leverage variables – which explain the other 1/3 - constitute the 

main triggers of cluster growth. Scientific variety is a key element that influences cluster 

growth. Policy makers and firm strategists may influence scientific variety by forming new 

teams and by investing new fields, but their actions will be most effective in small clusters, 

where the creation of a new team may affect the cluster‟s scientific variety. Surprisingly, 

although it fosters growth during the emerging phase, organizational diversity plays a 

negative role in cluster growth thereafter, and does not appear as an engine of scientific 

variety.  

The variation of the determinants of scientific cluster growth between geographic regions is 

surprising, and calls for more attention from policy makers. Policy measures implemented in 

one geography should not be replicated in another without the specific situation being 

carefully analyzed. Structural dimensions play a central role in creating a favorable context 

for scientific expansion, but while public policies may change such environmental 

characteristics in the medium run, they not really likely to do so in the short term.  

Finally, our analysis calls for a better understanding of the formation of scientific influence. 

Do numbers play a key role in the influence of the cluster over the definition of research 

avenues and the formation of new paradigms? Or do research avenues and exploration of new 

paradigms result from relationships between highly influential researchers? In that case, the 

composition of the scientific boards of leading journals, and of the scientific committees of 

the main conferences, associations with the highest distinctions (like Nobel Prizes) and the 
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number of citations received will be better indicators of a cluster‟s scientific influence than 

sheer publication numbers.  
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Appendix 1: Detailed presentation of scientific fields 

001 PHYS Physical, Chemical & Earth Sciences (PCES)  

Includes over 1,050 journals and books selected for their relevance to research in the 

physical sciences, chemistry and earth sciences, and classified into disciplines such 

as: 

Applied Physics/Condensed Matter/Materials Science 

Mathematics 

Inorganic & Nuclear Chemistry 

002 ENG Engineering, Computing & Technology (ECT)  

Includes over 1,100 journals and books selected for their relevance to research in 

engineering, computer science, and advanced technology, and classified into 

disciplines such as: 

Aerospace Engineering 

Computer Science & Engineering 

Optics & Acoustics 

003 ELECT Electronics & Telecommunications Collection (EC)  

Includes nearly 210 journals and trade publications selected for their relevance to 

research and development in the electronics industry, and classified into disciplines 

such as: 

Electronics & Electrical Engineering 

Optics & Laser Research & Technology 

Semiconductors & Solid State Materials Technology 

Telecommunications Technology 

004 LIFE Life Sciences (LS)  

Includes over 1,370 journals and books selected for their relevance to research in the 

life sciences, classified into disciplines such as: 

Animal & Plant Sciences 

Cell & Developmental Biology 

Physiology 

005 AGRI Agriculture, Biology & Environmental Sciences (ABES) 

Includes over 1,040 journals and books selected for their relevance to research in 

agriculture, biology, and environmental sciences, and classified into disciplines such 

as: 

Aquatic Sciences 

Biotechnology & Applied Microbiology 

Entomology/Pest Control 

006 MED Clinical Medicine (CM)  

Includes over 1,120 journals and books selected for their relevance to research in 

clinical medicine, classified into disciplines such as: 

Anesthesia & Intensive Care 

Cardiovascular & Respiratory Systems 

Surgery 

 


